博客
关于我
用线性回归计算缺失值
阅读量:352 次
发布时间:2019-03-04

本文共 2672 字,大约阅读时间需要 8 分钟。

  • Missing data

    Missing data can grocely be classified into three types:

    1. MCAR(Missing Completely At Random), which means that there is nothing systematic about why some date is missing. That is, there is no relationship between the fact that data is missing and either the observed or unobserved covariates.
    2. MAR(Missing At Random), resembles MCAR because there still is an element of randomness.
    3. MNAR(Missing Not At Random), implies that the fact that fata is missing is directly correlated with the value of the misssing data.
  • How to deal with missing data

    1. Just delete missing entries
    2. Replaceing missing values with the mean or median
    3. Linear Regression

      First, several predictors of the variable with missing values are identified using a correlation matrix. The best predictors are selected and used as independent variables in a regression equation.

      The variable with missing data is used as the dependent variable.

      Second, cases with complete data for the predictor variables are used to generate the regression equation;

      Third, the equation is then used to predict missing values for incomplete cases in an iterative process.

      以上是单变量线性回归

    4. 多元线性回归

      Linear regression has signigicant limits like:

      • It can’t easily match any data set that is non-linear
      • It can only be used to make predictions that fit within the range of the training data set
      • It can only be fit to data sets with a single dependent variables and a single independent variable

      This is where multiple regression comes in. It is specifically designed to create regressions on models with a single dependent variable and multiple independent variables.

      Equation for multiple regpression takes the form:

      y = b 1 ∗ x 1 + b 2 ∗ x 2 + . . . + b n ∗ x n + a y=b_1*x_1+b_2*x_2+...+b_n*x_n+a y=b1x1+b2x2+...+bnxn+a
      b i b_i bi coefficients;

      x i x_i xi independent variables; also called predictor variables

      y i y_i yi dependent vairables; also called criterion variable

      a a a a constant stating the value of the depnedent variable;

      How to fit a multiple regression model ?

      Similarly to minimized the sum of squared errors to find B in the linear regression, we minimize the sum of squared errors to find all the B terms in multiple regression.

      Exactly we use stochastic gradient descent(随机梯度下降).

      How to make sure the model fits the data well ?

      Use the same r 2 r^2 r2 value that was used for linear regression.

      r 2 r^2 r2 which is called the coefficient of determination, states the portion of change in the data set that is predicted by the model. It’s a value ranging from 0 to 1. With 0 stating that the model has no ability to predict the result and 1 stating that the model predicts the result perfectly.

  • References

转载地址:http://pjge.baihongyu.com/

你可能感兴趣的文章
MySQL详解:索引的介绍和原理分析
查看>>
MYSQL语句。
查看>>
MySQL调优是程序员拿高薪的必备技能?
查看>>
MySQL调大sort_buffer_size,并发量一大,查询排序为啥又会变慢
查看>>
Mysql账号权限查询(grants)
查看>>
mysql转达梦7_达梦7的子查询分解示例说明
查看>>
MYSQL输入密码后闪退的解决方法
查看>>
MySQL迁移到达梦:如何轻松、高质量完成迁移任务
查看>>
mysql返回的时间和实际数据存储的时间有误差(java+mysql)
查看>>
mysql还有哪些自带的函数呢?别到处找了,看这个就够了。
查看>>
Mysql进入数据库
查看>>
mysql进阶 with-as 性能调优
查看>>
mysql进阶-查询优化-慢查询日志
查看>>
wargame narnia writeup
查看>>
MySQL进阶篇SQL优化(InnoDB锁问题排查与解决)
查看>>
Mysql进阶索引篇03——2个新特性,11+7条设计原则教你创建索引
查看>>
mysql远程连接设置
查看>>
MySql连接出现1251Client does not support authentication protocol requested by server解决方法
查看>>
Mysql连接时报时区错误
查看>>
MySql连接时提示:unknown Mysql server host
查看>>