博客
关于我
用线性回归计算缺失值
阅读量:352 次
发布时间:2019-03-04

本文共 2672 字,大约阅读时间需要 8 分钟。

  • Missing data

    Missing data can grocely be classified into three types:

    1. MCAR(Missing Completely At Random), which means that there is nothing systematic about why some date is missing. That is, there is no relationship between the fact that data is missing and either the observed or unobserved covariates.
    2. MAR(Missing At Random), resembles MCAR because there still is an element of randomness.
    3. MNAR(Missing Not At Random), implies that the fact that fata is missing is directly correlated with the value of the misssing data.
  • How to deal with missing data

    1. Just delete missing entries
    2. Replaceing missing values with the mean or median
    3. Linear Regression

      First, several predictors of the variable with missing values are identified using a correlation matrix. The best predictors are selected and used as independent variables in a regression equation.

      The variable with missing data is used as the dependent variable.

      Second, cases with complete data for the predictor variables are used to generate the regression equation;

      Third, the equation is then used to predict missing values for incomplete cases in an iterative process.

      以上是单变量线性回归

    4. 多元线性回归

      Linear regression has signigicant limits like:

      • It can’t easily match any data set that is non-linear
      • It can only be used to make predictions that fit within the range of the training data set
      • It can only be fit to data sets with a single dependent variables and a single independent variable

      This is where multiple regression comes in. It is specifically designed to create regressions on models with a single dependent variable and multiple independent variables.

      Equation for multiple regpression takes the form:

      y = b 1 ∗ x 1 + b 2 ∗ x 2 + . . . + b n ∗ x n + a y=b_1*x_1+b_2*x_2+...+b_n*x_n+a y=b1x1+b2x2+...+bnxn+a
      b i b_i bi coefficients;

      x i x_i xi independent variables; also called predictor variables

      y i y_i yi dependent vairables; also called criterion variable

      a a a a constant stating the value of the depnedent variable;

      How to fit a multiple regression model ?

      Similarly to minimized the sum of squared errors to find B in the linear regression, we minimize the sum of squared errors to find all the B terms in multiple regression.

      Exactly we use stochastic gradient descent(随机梯度下降).

      How to make sure the model fits the data well ?

      Use the same r 2 r^2 r2 value that was used for linear regression.

      r 2 r^2 r2 which is called the coefficient of determination, states the portion of change in the data set that is predicted by the model. It’s a value ranging from 0 to 1. With 0 stating that the model has no ability to predict the result and 1 stating that the model predicts the result perfectly.

  • References

转载地址:http://pjge.baihongyu.com/

你可能感兴趣的文章
mysql操作数据表的命令_MySQL数据表操作命令
查看>>
mysql操作日志记录查询_如何使用SpringBoot AOP 记录操作日志、异常日志?
查看>>
MySQL支持的事务隔离级别,以及悲观锁和乐观锁的原理和应用场景?
查看>>
mysql支持表情
查看>>
MySQL支撑百万级流量高并发的网站部署详解
查看>>
MySQL改动rootpassword的多种方法
查看>>
mysql数据分组索引_MYSQL之索引配置方法分类
查看>>
mysql数据取差,mysql屏蔽主外键关联关系
查看>>
MySQL数据和Redis缓存一致性方案详解
查看>>
MySQL数据和Redis缓存一致性方案详解
查看>>
Mysql数据库 InnoDB存储引擎中Master Thread的执行流程
查看>>
MySQL数据库 范式
查看>>
Mysql数据库B-Tree索引
查看>>
mysql数据库io空闲_mysql数据库磁盘io高的排查
查看>>
mysql数据库root密码忘记,查看或修改的解决方法
查看>>
MySQL数据库SQL注入靶场sqli通关实战(附靶场安装包)
查看>>
MYSQL数据库下载安装(Windows版本)
查看>>
MySQL数据库与Informix:能否创建同名表?
查看>>
mysql数据库中的数据如何加密呢?mysql8.0自带新特性
查看>>
MySQL数据库优化
查看>>