博客
关于我
用线性回归计算缺失值
阅读量:352 次
发布时间:2019-03-04

本文共 2672 字,大约阅读时间需要 8 分钟。

  • Missing data

    Missing data can grocely be classified into three types:

    1. MCAR(Missing Completely At Random), which means that there is nothing systematic about why some date is missing. That is, there is no relationship between the fact that data is missing and either the observed or unobserved covariates.
    2. MAR(Missing At Random), resembles MCAR because there still is an element of randomness.
    3. MNAR(Missing Not At Random), implies that the fact that fata is missing is directly correlated with the value of the misssing data.
  • How to deal with missing data

    1. Just delete missing entries
    2. Replaceing missing values with the mean or median
    3. Linear Regression

      First, several predictors of the variable with missing values are identified using a correlation matrix. The best predictors are selected and used as independent variables in a regression equation.

      The variable with missing data is used as the dependent variable.

      Second, cases with complete data for the predictor variables are used to generate the regression equation;

      Third, the equation is then used to predict missing values for incomplete cases in an iterative process.

      以上是单变量线性回归

    4. 多元线性回归

      Linear regression has signigicant limits like:

      • It can’t easily match any data set that is non-linear
      • It can only be used to make predictions that fit within the range of the training data set
      • It can only be fit to data sets with a single dependent variables and a single independent variable

      This is where multiple regression comes in. It is specifically designed to create regressions on models with a single dependent variable and multiple independent variables.

      Equation for multiple regpression takes the form:

      y = b 1 ∗ x 1 + b 2 ∗ x 2 + . . . + b n ∗ x n + a y=b_1*x_1+b_2*x_2+...+b_n*x_n+a y=b1x1+b2x2+...+bnxn+a
      b i b_i bi coefficients;

      x i x_i xi independent variables; also called predictor variables

      y i y_i yi dependent vairables; also called criterion variable

      a a a a constant stating the value of the depnedent variable;

      How to fit a multiple regression model ?

      Similarly to minimized the sum of squared errors to find B in the linear regression, we minimize the sum of squared errors to find all the B terms in multiple regression.

      Exactly we use stochastic gradient descent(随机梯度下降).

      How to make sure the model fits the data well ?

      Use the same r 2 r^2 r2 value that was used for linear regression.

      r 2 r^2 r2 which is called the coefficient of determination, states the portion of change in the data set that is predicted by the model. It’s a value ranging from 0 to 1. With 0 stating that the model has no ability to predict the result and 1 stating that the model predicts the result perfectly.

  • References

转载地址:http://pjge.baihongyu.com/

你可能感兴趣的文章
nestJS学习
查看>>
net core 环境部署的坑
查看>>
NET Framework安装失败的麻烦
查看>>
Net 应用程序如何在32位操作系统下申请超过2G的内存
查看>>
Net.Framework概述
查看>>
NET3.0+中使软件发出声音[整理篇]<转>
查看>>
net::err_aborted 错误码 404
查看>>
NetApp凭借领先的混合云数据与服务把握数字化转型机遇
查看>>
NetAssist网络调试工具使用指南 (附NetAssist工具包)
查看>>
Netbeans 8.1启动参数配置
查看>>
NetBeans IDE8.0需要JDK1.7及以上版本
查看>>
NetBeans之JSP开发环境的搭建...
查看>>
NetBeans之改变难看的JSP脚本标签的背景色...
查看>>
netbeans生成的maven工程没有web.xml文件 如何新建
查看>>
netcat的端口转发功能的实现
查看>>
NetCore 上传,断点续传,可支持流上传
查看>>
Netcraft报告: let's encrypt和Comodo发布成千上万的网络钓鱼证书
查看>>
Netem功能
查看>>
netfilter应用场景
查看>>
Netflix:当你按下“播放”的时候发生了什么?
查看>>