博客
关于我
用线性回归计算缺失值
阅读量:352 次
发布时间:2019-03-04

本文共 2672 字,大约阅读时间需要 8 分钟。

  • Missing data

    Missing data can grocely be classified into three types:

    1. MCAR(Missing Completely At Random), which means that there is nothing systematic about why some date is missing. That is, there is no relationship between the fact that data is missing and either the observed or unobserved covariates.
    2. MAR(Missing At Random), resembles MCAR because there still is an element of randomness.
    3. MNAR(Missing Not At Random), implies that the fact that fata is missing is directly correlated with the value of the misssing data.
  • How to deal with missing data

    1. Just delete missing entries
    2. Replaceing missing values with the mean or median
    3. Linear Regression

      First, several predictors of the variable with missing values are identified using a correlation matrix. The best predictors are selected and used as independent variables in a regression equation.

      The variable with missing data is used as the dependent variable.

      Second, cases with complete data for the predictor variables are used to generate the regression equation;

      Third, the equation is then used to predict missing values for incomplete cases in an iterative process.

      以上是单变量线性回归

    4. 多元线性回归

      Linear regression has signigicant limits like:

      • It can’t easily match any data set that is non-linear
      • It can only be used to make predictions that fit within the range of the training data set
      • It can only be fit to data sets with a single dependent variables and a single independent variable

      This is where multiple regression comes in. It is specifically designed to create regressions on models with a single dependent variable and multiple independent variables.

      Equation for multiple regpression takes the form:

      y = b 1 ∗ x 1 + b 2 ∗ x 2 + . . . + b n ∗ x n + a y=b_1*x_1+b_2*x_2+...+b_n*x_n+a y=b1x1+b2x2+...+bnxn+a
      b i b_i bi coefficients;

      x i x_i xi independent variables; also called predictor variables

      y i y_i yi dependent vairables; also called criterion variable

      a a a a constant stating the value of the depnedent variable;

      How to fit a multiple regression model ?

      Similarly to minimized the sum of squared errors to find B in the linear regression, we minimize the sum of squared errors to find all the B terms in multiple regression.

      Exactly we use stochastic gradient descent(随机梯度下降).

      How to make sure the model fits the data well ?

      Use the same r 2 r^2 r2 value that was used for linear regression.

      r 2 r^2 r2 which is called the coefficient of determination, states the portion of change in the data set that is predicted by the model. It’s a value ranging from 0 to 1. With 0 stating that the model has no ability to predict the result and 1 stating that the model predicts the result perfectly.

  • References

转载地址:http://pjge.baihongyu.com/

你可能感兴趣的文章
mysql的密码管理、mysql初始密码查找、密码修改、mysql登录
查看>>
mysql的常见八股文面试题
查看>>
MySQL的常见命令
查看>>
mysql的引擎以及优缺点_MySQL有哪些存储引擎,各自的优缺点,应用场景-阿里云开发者社区...
查看>>
MySQL的操作:
查看>>
mysql的数据类型有哪些?
查看>>
mysql的语法规范
查看>>
MySql的连接查询
查看>>
mysql的配置文件参数
查看>>
MySQL的错误:No query specified
查看>>
mysql监控工具-PMM,让你更上一层楼(上)
查看>>
mysql监控工具-PMM,让你更上一层楼(下)
查看>>
MySQL相关命令
查看>>
mysql社工库搭建教程_社工库的搭建思路与代码实现
查看>>
Warning: Can't perform a React state update on an unmounted component. This is a no-
查看>>
mysql笔记 (早前的,很乱)
查看>>
MySQL笔记:InnoDB的锁机制
查看>>
mysql第一天~mysql基础【主要是DDL、DML、DQL语句,以及重点掌握存存引擎、查询(模糊查询)】
查看>>
mysql第二天~mysql基础【查询排序、分页查询、多表查询、数据备份与恢复等】
查看>>
MySQL简介和安装
查看>>