博客
关于我
用线性回归计算缺失值
阅读量:352 次
发布时间:2019-03-04

本文共 2672 字,大约阅读时间需要 8 分钟。

  • Missing data

    Missing data can grocely be classified into three types:

    1. MCAR(Missing Completely At Random), which means that there is nothing systematic about why some date is missing. That is, there is no relationship between the fact that data is missing and either the observed or unobserved covariates.
    2. MAR(Missing At Random), resembles MCAR because there still is an element of randomness.
    3. MNAR(Missing Not At Random), implies that the fact that fata is missing is directly correlated with the value of the misssing data.
  • How to deal with missing data

    1. Just delete missing entries
    2. Replaceing missing values with the mean or median
    3. Linear Regression

      First, several predictors of the variable with missing values are identified using a correlation matrix. The best predictors are selected and used as independent variables in a regression equation.

      The variable with missing data is used as the dependent variable.

      Second, cases with complete data for the predictor variables are used to generate the regression equation;

      Third, the equation is then used to predict missing values for incomplete cases in an iterative process.

      以上是单变量线性回归

    4. 多元线性回归

      Linear regression has signigicant limits like:

      • It can’t easily match any data set that is non-linear
      • It can only be used to make predictions that fit within the range of the training data set
      • It can only be fit to data sets with a single dependent variables and a single independent variable

      This is where multiple regression comes in. It is specifically designed to create regressions on models with a single dependent variable and multiple independent variables.

      Equation for multiple regpression takes the form:

      y = b 1 ∗ x 1 + b 2 ∗ x 2 + . . . + b n ∗ x n + a y=b_1*x_1+b_2*x_2+...+b_n*x_n+a y=b1x1+b2x2+...+bnxn+a
      b i b_i bi coefficients;

      x i x_i xi independent variables; also called predictor variables

      y i y_i yi dependent vairables; also called criterion variable

      a a a a constant stating the value of the depnedent variable;

      How to fit a multiple regression model ?

      Similarly to minimized the sum of squared errors to find B in the linear regression, we minimize the sum of squared errors to find all the B terms in multiple regression.

      Exactly we use stochastic gradient descent(随机梯度下降).

      How to make sure the model fits the data well ?

      Use the same r 2 r^2 r2 value that was used for linear regression.

      r 2 r^2 r2 which is called the coefficient of determination, states the portion of change in the data set that is predicted by the model. It’s a value ranging from 0 to 1. With 0 stating that the model has no ability to predict the result and 1 stating that the model predicts the result perfectly.

  • References

转载地址:http://pjge.baihongyu.com/

你可能感兴趣的文章
MySQL数据库优化
查看>>
MySQL数据库优化总结
查看>>
MySQL数据库入门看这一篇文章就够了
查看>>
Mysql数据库函数contac_函数:函数删除操作语法&使用例——《mysql 从入门到内卷再到入土》...
查看>>
mysql数据库命令备份还原
查看>>
mysql数据库基础教程
查看>>
MySQL数据库备份
查看>>
mysql数据库备份与恢复
查看>>
MySQL数据库备份实战
查看>>
Mysql数据库备份的问题:mysqldump: Got error: 1049: Unknown_无需整理
查看>>
mysql数据库如何重置密码是多少钱_MySQL数据库忘记root密码如何重置修改
查看>>
MySQL数据库安装配置与常用命令
查看>>
MySQL数据库实现主从同步数据
查看>>
mysql数据库导入导出_windows系统以及linux系统下的操作---linux工作笔记042
查看>>
mysql数据库导出导入
查看>>
MySQL数据库工具类之——DataTable批量加入MySQL数据库(Net版)
查看>>
mysql数据库常用命令
查看>>
MySQL数据库必会的增删查改操作(CRUD)
查看>>
MySQL数据库性能分析与调优实践
查看>>
mysql数据库扫盲,你真的知道什么是数据库嘛
查看>>