博客
关于我
用线性回归计算缺失值
阅读量:352 次
发布时间:2019-03-04

本文共 2672 字,大约阅读时间需要 8 分钟。

  • Missing data

    Missing data can grocely be classified into three types:

    1. MCAR(Missing Completely At Random), which means that there is nothing systematic about why some date is missing. That is, there is no relationship between the fact that data is missing and either the observed or unobserved covariates.
    2. MAR(Missing At Random), resembles MCAR because there still is an element of randomness.
    3. MNAR(Missing Not At Random), implies that the fact that fata is missing is directly correlated with the value of the misssing data.
  • How to deal with missing data

    1. Just delete missing entries
    2. Replaceing missing values with the mean or median
    3. Linear Regression

      First, several predictors of the variable with missing values are identified using a correlation matrix. The best predictors are selected and used as independent variables in a regression equation.

      The variable with missing data is used as the dependent variable.

      Second, cases with complete data for the predictor variables are used to generate the regression equation;

      Third, the equation is then used to predict missing values for incomplete cases in an iterative process.

      以上是单变量线性回归

    4. 多元线性回归

      Linear regression has signigicant limits like:

      • It can’t easily match any data set that is non-linear
      • It can only be used to make predictions that fit within the range of the training data set
      • It can only be fit to data sets with a single dependent variables and a single independent variable

      This is where multiple regression comes in. It is specifically designed to create regressions on models with a single dependent variable and multiple independent variables.

      Equation for multiple regpression takes the form:

      y = b 1 ∗ x 1 + b 2 ∗ x 2 + . . . + b n ∗ x n + a y=b_1*x_1+b_2*x_2+...+b_n*x_n+a y=b1x1+b2x2+...+bnxn+a
      b i b_i bi coefficients;

      x i x_i xi independent variables; also called predictor variables

      y i y_i yi dependent vairables; also called criterion variable

      a a a a constant stating the value of the depnedent variable;

      How to fit a multiple regression model ?

      Similarly to minimized the sum of squared errors to find B in the linear regression, we minimize the sum of squared errors to find all the B terms in multiple regression.

      Exactly we use stochastic gradient descent(随机梯度下降).

      How to make sure the model fits the data well ?

      Use the same r 2 r^2 r2 value that was used for linear regression.

      r 2 r^2 r2 which is called the coefficient of determination, states the portion of change in the data set that is predicted by the model. It’s a value ranging from 0 to 1. With 0 stating that the model has no ability to predict the result and 1 stating that the model predicts the result perfectly.

  • References

转载地址:http://pjge.baihongyu.com/

你可能感兴趣的文章
mysql给账号授权相关功能 | 表、视图等
查看>>
MySQL缓存使用率超过80%的解决方法
查看>>
Mysql缓存调优的基本知识(附Demo)
查看>>
mysql编写存储过程
查看>>
mysql网站打开慢问题排查&数据库优化
查看>>
mysql网络部分代码
查看>>
mysql联合索引 where_mysql联合索引与Where子句优化浅析
查看>>
mysql联合索引的最左前缀匹配原则
查看>>
MySQL聚簇索引
查看>>
mysql自动化同步校验_Shell: 分享MySQL数据同步+主从复制自动化脚本_20190313_七侠镇莫尛貝...
查看>>
Mysql自增id理解
查看>>
mysql自增id超大问题查询
查看>>
MySQL自定义变量?学不废不收费
查看>>
MySQL自带information_schema数据库使用
查看>>
MySQL获取分组后的TOP 1和TOP N记录
查看>>
mysql虚拟列表_动态网页制作-官方版合集下载-多特
查看>>
MySQL蜜罐反制获取攻击者信息
查看>>
Mysql表创建外键报错
查看>>
mysql表格调取数据库信息_MySQL™ 参考手册(获取有关数据库和表的信息)
查看>>
mysql表检查分析优化
查看>>