博客
关于我
用线性回归计算缺失值
阅读量:352 次
发布时间:2019-03-04

本文共 2672 字,大约阅读时间需要 8 分钟。

  • Missing data

    Missing data can grocely be classified into three types:

    1. MCAR(Missing Completely At Random), which means that there is nothing systematic about why some date is missing. That is, there is no relationship between the fact that data is missing and either the observed or unobserved covariates.
    2. MAR(Missing At Random), resembles MCAR because there still is an element of randomness.
    3. MNAR(Missing Not At Random), implies that the fact that fata is missing is directly correlated with the value of the misssing data.
  • How to deal with missing data

    1. Just delete missing entries
    2. Replaceing missing values with the mean or median
    3. Linear Regression

      First, several predictors of the variable with missing values are identified using a correlation matrix. The best predictors are selected and used as independent variables in a regression equation.

      The variable with missing data is used as the dependent variable.

      Second, cases with complete data for the predictor variables are used to generate the regression equation;

      Third, the equation is then used to predict missing values for incomplete cases in an iterative process.

      以上是单变量线性回归

    4. 多元线性回归

      Linear regression has signigicant limits like:

      • It can’t easily match any data set that is non-linear
      • It can only be used to make predictions that fit within the range of the training data set
      • It can only be fit to data sets with a single dependent variables and a single independent variable

      This is where multiple regression comes in. It is specifically designed to create regressions on models with a single dependent variable and multiple independent variables.

      Equation for multiple regpression takes the form:

      y = b 1 ∗ x 1 + b 2 ∗ x 2 + . . . + b n ∗ x n + a y=b_1*x_1+b_2*x_2+...+b_n*x_n+a y=b1x1+b2x2+...+bnxn+a
      b i b_i bi coefficients;

      x i x_i xi independent variables; also called predictor variables

      y i y_i yi dependent vairables; also called criterion variable

      a a a a constant stating the value of the depnedent variable;

      How to fit a multiple regression model ?

      Similarly to minimized the sum of squared errors to find B in the linear regression, we minimize the sum of squared errors to find all the B terms in multiple regression.

      Exactly we use stochastic gradient descent(随机梯度下降).

      How to make sure the model fits the data well ?

      Use the same r 2 r^2 r2 value that was used for linear regression.

      r 2 r^2 r2 which is called the coefficient of determination, states the portion of change in the data set that is predicted by the model. It’s a value ranging from 0 to 1. With 0 stating that the model has no ability to predict the result and 1 stating that the model predicts the result perfectly.

  • References

转载地址:http://pjge.baihongyu.com/

你可能感兴趣的文章
Netty工作笔记0042---Netty入门--编写客户端
查看>>
Netty工作笔记0043---单Reactor多线程模式
查看>>
Netty工作笔记0044---Netty案例源码分析
查看>>
Netty工作笔记0044---scheduledTaskQueue
查看>>
Netty工作笔记0045---Netty模型梳理
查看>>
Netty工作笔记0045---异步模型原理剖析
查看>>
Netty工作笔记0046---TaskQueue自定义任务
查看>>
Netty工作笔记0046---异步模型原理剖析
查看>>
Netty工作笔记0047---Http服务程序实例
查看>>
Netty工作笔记0048---Http服务过滤资源
查看>>
Netty工作笔记0049---阶段内容梳理
查看>>
Netty工作笔记0050---Netty核心模块1
查看>>
Netty工作笔记0051---Netty核心模块2
查看>>
Netty工作笔记0052---Pipeline组件剖析
查看>>
Netty工作笔记0053---Netty核心模块梳理
查看>>
Netty工作笔记0054---EventLoop组件
查看>>
Netty工作笔记0055---Unpooled应用实例1
查看>>
Netty工作笔记0056---Unpooled应用实例2
查看>>
Netty工作笔记0057---Netty群聊系统服务端
查看>>
Netty工作笔记0058---Netty群聊系统客户端
查看>>